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On the Work Neded to F'actor a
Symmetric Positive Definite Matrix
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Department of Industrial Engineering and Operations Research,
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ABSTRACT

When comparing different row ordering strategies, the
measure often used is the fill-in, or the number of additional
non-zeroes elements/.iiikthis report q weproposes~an another
measure: the number of arithmetic operations necessary to fac-
tor the matrix. Two classical ordering strategies: Minimum
Degree and Minimum Local Fill-in are compared with respect
to this measure and Minimum Local Fill-in usually produces
better results than Minimum Degree. Also, an application is
presented where the number of arithmetic operations may be
more interesting measure of performance , is presented:
Karmarkar's Linear Programming Algorithm. 70 -- :A ~ rr 4 o,~-
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On the Work Needed to Factor a
Symmetric Positive Definite Matrix

Marcio de Carvalho t

Department of Industrial Engineering and Operations Research,
University of California, Berkeley, CA 94720

1. Introduction
We are interested in studying the influence of the ordering of the rows

and columns of a symmetric positive definite matrix A on the work (number
of arithmetic operations) required to obtain its Cholesky factors. Put in
other words, we want to compare the effect of the use of different permuta-
tion matrices P on the work necessary to obtain a lower triangular matrix
L such that PApT = LLT.

The complexity of the problem of obtaining an ordering which minim-
izes the work is not known; it is conjectured by this author that this prob-
lem is at least as hard as the NP-hard problems. A strong indication of this
difficulty is that a simpler but somewhat related problem is known to be in
this class, namely the problem of computing an ordering which minimizes
the fill-in [Yannakakis 1981]. A practical implication of the fact that a
problem is NP-hard is that no efficient algorithm for its solution is known.
And if one devises an algorithm for any problem in this class all others
would also be solvable in an efficient way by this same algorithm, which
makes the existence of such an algorithm very unlikely.

In our specific case, being NP-hard means that the effort of finding an
ordering which minimizes any of the above mentioned criteria is greater
than that required for the solution of the system itself, and therefore it
would be a waste effort to obtain it exactly.

Heuristics have been devised to obtain an ordering which will fulfill
approximately a desired criterion and would not be computationally expen-
sive. Using an heuristic to solve a problem presents some drawbacks since
the computed solution is not necessarely a good one. There have been dev-
ised a number of ways to measure the performance of a strategy and an
accepted measure for ordering heuristics is to submit it to a series of stan-
dard test problems and from the data gathered, derive conclusions. This will
be the approach used here.

t on leave from )CC.ICEz, Univeraidade Federal de Minas Gerais. Belo Horisonte, Brasil.



2 M. de Crvdko

A widely used ordering heuristic is known as Minimum Degree, a
description can be found in [Rose 1973]. Experience has shown that it
presents a good trade-off between cost of computation and reduction of fill-in
[Duff et al 1986]. Another heuristic is Minimum Local Fill-in, or minimum
deficiency also presented in [Rose 19731. The computation of this ordering is
more expensive than Minimum Degree, but because it uses more informa-
tion during the computation it usually gives a smaller fill-in. Minimum
Local Fill-in does not present empirically as good as a trade-off between exe-
cution time and reduction of fill-in as Minimum Degree, for this reason it
has not been as widely used as the former heuristic. It is pertinent to notice
that since these are only heuristics, examples can be constructed where
Minimum Degree yields a smaller fill-in than Minimum Local Fill-in and
vice-versa [Duff et al 1986].

The main objective of this report is to compare the performance of these
two classical ordering heuristics using as a measure, the work necessary to
factor the ordered matrix. A natural question is whether the minimization
of the fill-in also minimizes the work per solution; this will addressed in the
next section.

We implemented a version of Minimum Local Fill-in based on the
description in [Vlach and Singal 1983] and it is compared to a Minimum
Degree implementation from the YALE package on some standard test prob-
lems, obtained through electronic mail. The results are presented in section
3. And finally in section 4, the conclusions are presented. In the appendix,
the tables and some pictures of matrices are presented.

2. Some Theoretical Facts
In this section we will present some facts relating vertex ordering to

fill-in and factoring work. First, some definitions and notation.

Definition 1
GA -(XA,EAj is the graph associated to the symmetric matrix

A. The vertices of XA will correspond to rows/columns of A, and there
will be an edge connecting vertex i to vertex j, ei = eji E EA if there
is a non-zero element in row i and column j. Lets denote by n , the
cardinality of the set XA , which is the number of rows/columns of A.
Let a be an ordering of the vertices of GA , such that a(i) is the ilk

vertex to be eliminated and let
Ga be the graph obtained after the elimination of the vertices of GA

according to the sequence a. The graph GI will have the same vertex set
as GA and its edge set will the union of the original edges EA and the
edges created by the elimination process EF(*', called the fill-in edges.
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Definition 2

d.i) is the degree of the i a vertex in the ordering a.

Definition 3

work(a) = ± d2t) This is asymptotic number of arithmetic opera-

tions necessary to perform the factorization of the matrix A. An
interested reader will find the exact expression in [Rose 1973].

Fact I
Given two orderings a and fi , such that E - EP then w(a) = w
Note that G = GP is a chordal graph and a and fP are two perfect

elimination orderings since the factoring of G* following the ordering a
does not introduce any fill-in. By [Rose 1983], we have that:

I d () d (2)' .*d~n)I= Idp(l), dP(2), ... .pn

Or in words, for a chordal graph, the set of degrees encountered during
the factorization following any perfect elimination ordering is the same.
And therefore, the work is the same.

Maybe a more interesting case is when the number of added edges for
two different orderings is the same and some of these edges connects
different vertices. This is examined next.

Fact 2
Given two orderings a and P , such that JEal = IEPJ then it is possi-

ble that w(a) ; w(P).
This is shown by the example I, following:

From Fact 2, one sees that fill-in alone might not be the best measure
of performance of an heuristic. It is possible to have the same number of
fill-in edges and different work. From these facts, it not clear that
Minimum Degree is better than Minimum Local Fill-in with respect to work
per factoring.

A further question that remained unanswered concerns the case where
the orderings are minimizers of the fill-in. Are the above results still true?
How different can the graphs GY and G8 be, when y and 8 are order-
ings that minimize the fill-in? We have been able to construct examples
where the resulting graphs are very different, but in all of them, the degree
sequence has been the same. Is this true in general? If one is just interested
in the practical aspects in the application of the orderings, one should not be
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erder : 3, 4, 2, 1.5, 6 order: 6 2, 3, 4, 1, 6

d 1 =3 d 1 =2

d2=3 d2=2

d3=2 d3=3

d4=1

d=1, d=0 d6=l, d6 =0

Example I

disturbed by these questions. An optimal ordering is too hard to be com-
puted.

3. Empirical Results
A first difficulty in comparing Minimum Degree and Minimum Local

Fill-in was the lack of code for Minimum Local Fill-in due to its reduced
acceptance by the community. The solution was to implement our own ver-
sion. A brief bibliographic research revealed just [Vlach and Singal 1983] as
a source of Minimum Local Fill-in implementation "tricks"; they also
present in the appendix a FORTRAN implementation of the heuristic. Unfor-
tunately, after a superficial look at their code two mistakes were discovered,
so rather than fixing them, we decided on implementing our own, but still
using their ideas. As a measure of complexity of the algorithm, one may
use the number of non-comment lines of the source code. The final FORTRAN
version of Minimum Local Fill-in had about 300 lines of non-comments,
which is comparable to the 220 of HARWELL's MA17E and 230 of YALE's MD.

" ~~~~L I~''' X't t" tt",,','7 ¢'
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The performance of the two available Minimum Degree codes were com-
parable. The MD routine of the YALE package was marginally better, and it
was the one used as a reference.

The matrices used as test case are constructed from Linear Program-
ming (LP) problems obtained though electronic mail from netlib@anl-
mcs.arpa, Argonne National Laboratories, Illinois. If we denote the LP
matrix by B , the test matrices used in this report are BB T . Incidentally,
this is the format used by Karmarkar's LP solver.

Table I presents Cholesky Factors Statistics for the matrices. The first
column is the LP problem name as given by netlib In this table and all the
following ones, the LP problems are presented in nondecreasing order with
respect to the number of nonzeroes in the original LP matrix B. In the
second column, Rows, contains the size of the square symmetric positive
definite matrix BBT . The third column, NZ contains the initial number of
Non-Zeroes of half of the matrix BBT. The next three columns are relative
to Minimum Degree and the last three concerns Minimum Local Fill-in. Fil
contains the fill-in in each Cholesky factor, Ops is the number of arithmetic
operations necessary to compute the factor and finally time is the time in
seconds of IBM 3090 necessary to compute the ordering.

Table II summarizes Table I, presenting the relative percentual change
of the values from Table I. For each quantity, the value relative to
Minimum Local Fill-in was subtracted from the correspondent Minimum
Degree value and divided by the value for Minimum Degree. This result was
then multiplyed by one hundred.

The data presented does not contradict the established dominance of
Minimum Degree over Minimum Local Fill-in, showing that, in average,
the percentual reduction in fill-in (and work) achieved by Minimum Local
Fill-in does not balance with the increase on processing time with respect to
Minimum Degree. By examining the columns of fill-in and operations, we
note that there is no clear relation between these two quantities, for some
cases, the reduction of work was greater than the reduction of fill-in and in
some cases, the opposite is observed.

These results seems to imply that one should use Minimum Degree
when decomposing the matrix only once and that Minimum Local Fill-in
should be the choice when a sequence of matrices with the same non-zero

structure are to be factored. An example of application where Minimum
Local Fill-in might be the choice is found in Karmarkar's algorithm for LP,
where at each iteration k , a matrix of the form BDABT needs to be fac-
tored. The matrix Dk is a diagonal matrix that is a function of the itera-
tion k , see [Adler et al 1987]. Note that only the values of the matrix to
be factored changes at each iteration, and the non-zero structure is the same
during the whole process.
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The same problems of Table I were solved by Karmarkar's algorithm,
using both ordering techniques and the results are presented in Table III.
The number bellow Min Fill and Min Degree are the solution times on the
IBM 3090. The value in the column % Change was computed using the
same algorithm previously described. Note that Minimum Local Fill-in gets
better as the problem size increases.

One might argue that the YALE code is not as up-to-date as our
Minimum Local Fill-in implementation. To address this point, Table IV was
constructed. Here the ordering time was subtracted from the total solution
time. Still one can see the decrease on solution time of the matrix ordered
by Minimum Local Fill-in as the problem size increases.

In the appendix, pictures of some matrices here treated are presented,
they provide a nice way to visualize the effect of the different orderings.

4. Conclusions
The number of arithmetic operations necessary to factor a symmetric

positive definite matrix or work, as it is referred here in this report, is an
important measure of quality of an heuristic and has not been much con-
sidered in the literature. Its importance can be noted specially when a
sequence of factorizations is to be performed on matrices with the same
non-zero structure. In this case, any reduction on work will be multiplyed
by the number of factorizations.

In this report, we use the measure of work to compare two well known
ordering heuristics and we observe that matrices obtained after Minimum
Local Fill-in will, in most of the cases, be factored in less time than the ones
after Minimum Degree. But because the larger processing time for Minimum
Local Fill-in, the total factoring time will only be smaller if a number of
factorizations are to be performed. This is the case observed in the imple-
mentation of Karmarkar's algorithm here presented.
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7. Appendix
Tables and Pictures



Cholesky Factors Statistics

Problem Rows NZ Minimum Degree Minimum Local Fillin

Fil Ops Time Fil Op. Time

AFIRO 27 63 17 77 .00 17 77 .00
ADLITTL 55 322 27 1155 .01 27 1155 .01
SCAGR7 128 478 128 1410 .02 119 1343 .01
SHARE2B 96 775 155 4428 .00 106 4052 .02
SHAREIB 112 855 458 8809 .02 203 5035 .03
SCORPIO 360 1555 409 6458 .03 303 5609 .05
SCAGR25 470 1900 578 6414 .05 515 5969 .05
SCTAPI 300 1386 981 11976 .04 868 10251 .06
BRANDY 134 2056 660 35857 .07 547 31543 .12
SCSD1 77 1056 259 12119 .03 259 12119 .04
ISRAEL 174 11053 261 494040 .23 163 484575 .91
BANDM 246 2683 1185 40045 .07 740 28189 .12
SCFXM1 315 2828 1820 47211 .06 1090 31279 .13
E226 208 2475 731 32949 .07 725 32836 .13
SCRS8 456 1497 3181 41109 .08 3159 41024 .17
BEACONF 115 1605 7 16427 .11 8 16450 .05
SCSD6 147 1952 446 19611 .06 446 19611 .09
SHIP04S 249 2578 307 17985 '.27 164 15833 .06
SCFXM2 630 5676 3485 89278 .13 2246 63508 .27
SHIP04L 325 3822 237 25068 .91 160 24077 .09
SHIP08S 334 3218 560 23699 .18 316 19815 .08
SCTAP2 1090 5505 8275 256907 .27 6555 156195 .57
SCFXM3 945 8524 5150 131345 .19 3402 95737 .40
SHIP12S 422 3811 830 29576 .07 451 23840 .09
SCSD8 397 3883 1599 35240 .04 1599 35240 .17
SCTAP3 1480 7386 10603 311467 .36 8845 203094 .81
CZPROB 689 5980 390 35432 6.06 393 35490 .23
25FV47 793 10922 22576 1201632 .62 16764 740991 2.58
SHIP08L 528 6244 356 40391 1.58 310 39798 .15
SHIP12L 692 8267 542 55294 1.51 476 54461 .18

Table I



% Changes

Problem Rows FilMin Ops Time

AFIRO 27 0.0 0.0 0.0
ADLrlTL 55 0.0 0.0 0.0
SCAGR7 128 7.0 4.8 50.0
SHARE2B 96 31.6 8.5
SHAREIB 112 55.7 42.8 -50.0
SCORPIO 360 25.9 13.1 -66.7
SCAGR25 470 10.9 6.9 0.0
SCTAPI 300 11.5 14.4 -50.0
BRANDY 134 17.1 12.0 -71.4
SCSDI 77 0.0 0.0 -33.3
ISRAEL 174 37.5 1.9 -295.7
BANDM 246 37.6 29.6 -71.4
SCFXM1 315 40.1 33.7 -116.7
E226 208 0.8 0.3 -85.7
SCRS8 456 0.7 0.2 -112.5
BEACONF 115 -14.3 -0.1 54.5
SCSD6 147 ' 0.0 0.0 -50.0
SHIP04S 249 46.6 42.0 77.8
SCFXM2 630 35.6 28.9 -107.7
SHIPO4L 325 32.5 4.0 90.1
SHIPO8S 334 43.6 16.4 55.6
SCTAP2 1090 20.8 39.2 -111.1
SCFXM3 945 33.9 27.1 -110.5
SHIP12S 422 45.7 19.4 -28.6
SCSD8 397 0.0 0.0 -325.0
SCTAP3 1480 16.6 34.8 -125.0
CZPROB 689 -0.8 -0.2 96.2
25FV47 793 25.7 38.3 -316.1
SHIP08L 528 12.9 1.5 90.5
SHIP12L 692 12.2 1.5 88.1

Table II



Solution Times

Problem Rows Iterations Min Fill Min Degree % Change

AFIRO 27 20 .05 .04 -25.0
ADLITTL 55 24 .13 .12 -8.3
SCAGR7 128 24 .18 .17 -5.9
SRARE2B 96 29 .82 .29 -10.3
SHAREIB 112 38 .47 .58 19.0
SCORPIO 360 24 .49 .51 3.9
SCAGR25 470 29 .70 .69 -1.4
SCTAP1 300 33 .80 .85 5.9
BRANDY 134 36 1.49 1.52 2.0
SCSD1 77 19 .4.41 -7.3
ISRAEL 174 37 13.08 13.46 2.8
BANDM 246 30 1.26 1.54 18.2
SCFXM1 315 33 1.66 1.97 15.7
E226 208 34 1.58 1.56 -1.3
SCRS8 456 39 2.28 2.30 0.9
BEACONF 115 23 .62 '.69 10.1
SCSD6G 147 22 .84 .83 -1.2
SHEP04S 249 30 1.01 1.26 19.8
SCFXM2 630 39 3.83 4.38 12.6
SHEP04L 325 28 1.39 2.31 39.8
SHIPO8S 334 32 1.35 1.58 14.6
SCTAP2 1090 34 5.52 6.71 17.7
SCFXM3 945 40 5.87 6.66 11.9
SHIP12S 422 35 1.75 1.91 8.4
SCSD8 397 23 1.82 1.68 -8.3
SCTAP 1480 36 7.78 9.44 17.6
CZPROB 689 52 3.64 9.76 62.7
25FV47 793 54 31.70 46.17 31.3
SHEP08L 528 31 2.44 4.00 39.0
SHEP12L 692 32 3.43 4.89 29.9

Table III

K IS I'l 11 1 1



Solution Times Without Ordering Time

Problem Mini Fill Mini Degree % Change

AFIRO 0.05 0.04 -25.0
ADLITTL 0.12 0.11 -9.1
SCAGR7 0.17 0.15 -13.3
SHARE2B 0.30 0.29 -3.4
SHAREIB 0.44 0.56 21.4
SCORPIO 0.44 0.48 8.3
SCAGR25 0.65 0.64 -1.6
SCTAPI 0.74 0.81 8.6
BRANDY 1.37 1.45 5.5
SCSD1 0.40 0.38 -5.3
ISRAEL 12.17 13.23 8.0
BANDM 1.14 1.47 22.4
SCFXMI 1.53 1.91 19.9
E226 1.45 1.49 2.7
SCRS8 2.11 2.22 5.0
BEACONF 0.57 0.58 1.7
SCSD6 0.75 0.77 2.6
SHEP04S 0.95 0.99 4.0
SCFXM2 3.56 4. 16.2
SHEP04L 1.30 1.40 7.1
SHIP08S 1.27 1.40 9.3
SCTAP2 4.95 6.44 23.1
SCFXM3 5.47 6.47 15.5
SHIP12S 1.66 1.84 9.8
SCSD8 1.65 1.64 -0.6
SCTAP3 6.97 9.08 23.2
CZPROB 3.41 3.70 7.8
25FV47 29.12 45.55 36.1
SHIP08L 2.29 2.42 5.4
SHEP12L 1 3.25 3.38 3.8

Table IV
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